If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-55x-1500=0
a = 2; b = -55; c = -1500;
Δ = b2-4ac
Δ = -552-4·2·(-1500)
Δ = 15025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15025}=\sqrt{25*601}=\sqrt{25}*\sqrt{601}=5\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-5\sqrt{601}}{2*2}=\frac{55-5\sqrt{601}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+5\sqrt{601}}{2*2}=\frac{55+5\sqrt{601}}{4} $
| 13=-1=11x+13 | | 3.7z-4.2=1.2(2z+3) | | 12-2.a=15-7.a | | 24y-22=24y=3 | | -14m+3/4=14m+1/4 | | -n-1/6=7 | | 5-(3x-2)=5x-2(x+3) | | 3(x+12)+3(x+30)=-18 | | 6y=2y+48 | | -2n+7=-1 | | (2x+49)+(x-9)+x=180 | | 9.a+17=-1 | | x+3/x-4=-2/3 | | 6n-7=4(n-1)+5 | | 31=10a-5+2a | | X-12y=0 | | x+20x=80 | | 2/5(x-1)=x+4 | | 20-(4.a)=4 | | -4n+2=-14 | | -4(-9x-23)=16(-10-4x) | | 11x-13=180 | | 2(4x+5)-3=5x(2+1) | | 11x+16=6x+31 | | 2x-6=3(x-1)+6 | | 45.3x=16.5 | | x/(x+6)=0.25 | | -7x+7=11 | | 2(12y-11)=1/2(48y+6) | | -31x-86=99-31x | | -4n+9=1 | | 4(3x-6)=6x-48 |